TOPICS IN STATISTICAL PHYSICS AND PROBABILITY THEORY
HOMEWORK SHEET 2

INSTRUCTOR: RON PELED, TEL AVIV UNIVERSITY

To hand in by July 10 to the instructor’s mailbox at Schreiber building.

In problems (i)-(iii) we consider the setup of infinite-volume Gibbs measures on configurations

Q=
(i)

(iii)

(iv)

{o|@:7Z%— S} given in the accompanying note.

Let P be an extremal Gibbs measure on . Let (A,) be an increasing sequence of finite
sets in Z¢ which increases to Z? (i.e., A,, C A, 41 and UA,, = Z%).

Prove that the measures Pfﬂ converge to P, P-almost surely (that is, one samples ¢ from
P and then considers an for all n with this fixed ¢, and convergence occurs for P-almost
every ¢).

Remark: There exist non-extremal Gibbs measures P for which there is no n : Z¢ — S
with ]P”]\n converging to P. See Example 6.64 in the book of Friedli and Velenik for such
an example for the 3-dimensional Ising model. There are open questions and conjectures
regarding which Gibbs measures are given by such limits (see, e.g., the paper of Coquille
https://arxiv.org/abs/1411.3265).

Prove that a translation-invariant Gibbs measure P is extremal within the set of translation-
invariant Gibbs measures if and only if P is ergodic.

Remark: The exercise implies, in particular, that if a translation-invariant Gibbs measure
is extremal (within all Gibbs measures) then it is ergodic. However, there are models in
which not all ergodic Gibbs measures are extremal.

Hint: Birkhoff’s ergodic theorem for Z¢ shifts states the following:

Let f: Q — R be integrable. Let Z be the sigma-algebra of all translation-invariant events
A C Q. Then for every translation-invariant probability measure P on 2,

Lh_)rgo QLT 17 Z f(6,0) =P(f|Z) P-almost surely and in L.
ve{-L,..,.L}d
where 0, is the configuration satisfying (6,¢), = p(w — v).

Let P be a Gibbs measure. Prove that P is extremal if and only if for every A C Q
measurable,

lim sup |[P(ANB)—-PAPB) =0,
lim, sup [P(A 1) B) ~ P(A(B)

where we write B € Fae to indicate that B C € is measurable and 1p(p) = 15(¢)
whenever ¢, = ¢/, for all v € Z9\ A, and where we write lim Arze o indicate a limit over
all sequences (A,,) of finite sets which increase to Z¢.

Remark: Thus extremal measures satisfy a form of weak mizing: ‘far away’ events are
almost uncorrelated.

Consider the Ising model with free boundary conditions. That is, fixing h, 8 > 0, the model
for each finite A C Z¢ is the measure }P’% on functions ¢ : A — {—1,1} given by

1
P?\(QD) = ﬁ exp B Z Pupy + hz Po | (1)
A u,vEN, u~v vEA

where, as usual, Z% is a normalization factor.
Let (A,) be a sequence of finite sets in Z¢ which increases to Z¢. Prove that P?\n converge

to a limiting Gibbs measure P? on functions ¢ : Z¢ — {—1,1} and that P? is translation
invariant.
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Clarification: We may view each measure IP as a measure on functions ¢ : Z% — {—1,1}
which is supported on functions with some fixed value outside Ay, e.g., having ¢, = 1
when v ¢ A,. In this way all the ]P’ A, are measures on the same space and convergence in
distribution is well defined.

Hint: This is Exercise 3.16 in the Friedli-Velenik book. Use the GKS inequality to first
prove that for any finite A C Z4, IP’?M (I e ®v) increases with n (Exercise 3.12).

Consider the Ising model with free boundary conditions at zero magnetic field, that is, the
model (1) with A = 0. To emphasize the dependence on temperature we now denote the
finite volume Gibbs measures by }P’?&’ 5 and the infinite-volume limit (of exercise (iv)) by IP’%.
Define the critical inverse temperature 5. by

. -’
Be = 1nf(ﬁ| Ulélzfd Pg(%sﬂo) > O)

(it can be shown that this definition coincides with the definitions discussed in class). The
following version of Simon’s inequality is due to Lieb: Let A C Z% be a finite connected set
containing the origin 0 and let v € Z?\ A. Then

Phovpo) < D PR (euv0)Ph(puen),
uGBmtA
where we write Ot A :={u € A|Jw ¢ A, u ~ w} for the internal vertex boundary of A.
Deduce that for every finite connected set A containing the origin one has

Y PBs(pupo) > L. 2)
UEint A
Remark: This means that at the critical point the correlations cannot decay faster than
polynomially. We have also seen that for 5 < B, the correlations decay exponentially
whereas for § > [, they do not decay (by definition).
Hint: Show that if there exists some A for which (2) is violated then there is exponential
decay of correlations. Apply this also at § = . + €.

Let U : R — R be a C? function satisfying U(z) = U(—x) and sup, U”(z) < oo. The
two-dimensional random surface model with potential U is specified as follows: For each
finite A C Z2 and 7 : Z> — R the probability measure P| on configurations ¢ : 7Z?> - Ris
given by

dP" (o) = Zlnexp = Y Ulpu—wo) | [T dew TT don (o) (3)

(w0 A veA  wEZA\A

where d; is the Dirac delta measure at s, so that the measure PX is supported on configu-
rations ¢ which equal 7 outside A and where Z} is chosen to normalize the measure to be
a probability measure (and we assume that U satisfies sufficient integrability conditions to
ensure that such normalization is possible).
(a) Mimic the proof of the Mermin-Wagner theorem given in class for the XY model to
show the following: There exist positive C = C(U) and a = a(U) such that for all
integer L >0, all 0 <t < 1 and all n: Z%2 = R,

C

PR, (exp(itw(o,0))] < Lot
where A == {-L,—-L+1,...,L}%
Remark: A similar argument shows that Var} (¢(o,0)) = ¢(U)log(L) for some positive
c(U).

(b) Deduce that the model does not have any Gibbs measures in two dimensions.
Remark: The same holds in dimension d = 1. In dimensions d > 3 the model does

admit Gibbs measures.



