TOPICS IN STATISTICAL PHYSICS AND PROBABILITY THEORY **HOMEWORK SHEET 2**

INSTRUCTOR: RON PELED, TEL AVIV UNIVERSITY

To hand in by July 10 to the instructor's mailbox at Schreiber building.

In problems (i)-(iii) we consider the setup of infinite-volume Gibbs measures on configurations $\Omega := \{ \varphi \, | \, \varphi : \mathbb{Z}^d \to S \}$ given in the accompanying note.

(i) Let \mathbb{P} be an *extremal* Gibbs measure on Ω . Let (Λ_n) be an increasing sequence of finite sets in \mathbb{Z}^d which increases to \mathbb{Z}^d (i.e., $\Lambda_n \subseteq \Lambda_{n+1}$ and $\cup \Lambda_n = \mathbb{Z}^d$). Prove that the measures $\mathbb{P}^{\varphi}_{\Lambda_n}$ converge to \mathbb{P} , \mathbb{P} -almost surely (that is, one samples φ from

 \mathbb{P} and then considers $\mathbb{P}^{\varphi}_{\Lambda_n}$ for all *n* with this fixed φ , and convergence occurs for \mathbb{P} -almost every φ).

Remark: There exist non-extremal Gibbs measures \mathbb{P} for which there is no $\eta: \mathbb{Z}^d \to S$ with $\mathbb{P}^{\eta}_{\Lambda_{n}}$ converging to \mathbb{P} . See Example 6.64 in the book of Friedli and Velenik for such an example for the 3-dimensional Ising model. There are open questions and conjectures regarding which Gibbs measures are given by such limits (see, e.g., the paper of Coquille https://arxiv.org/abs/1411.3265).

(ii) Prove that a translation-invariant Gibbs measure \mathbb{P} is extremal within the set of translationinvariant Gibbs measures if and only if \mathbb{P} is ergodic.

Remark: The exercise implies, in particular, that if a translation-invariant Gibbs measure is extremal (within all Gibbs measures) then it is ergodic. However, there are models in which not all ergodic Gibbs measures are extremal.

Hint: Birkhoff's ergodic theorem for \mathbb{Z}^d shifts states the following:

Let $f: \Omega \to \mathbb{R}$ be integrable. Let \mathcal{I} be the sigma-algebra of all translation-invariant events $A \subseteq \Omega$. Then for every translation-invariant probability measure \mathbb{P} on Ω ,

$$\lim_{L \to \infty} \frac{1}{(2L+1)^d} \sum_{v \in \{-L, \dots, L\}^d} f(\theta_v \varphi) = \mathbb{P}(f \mid \mathcal{I}) \quad \mathbb{P}\text{-almost surely and in } L^1.$$

where $\theta_v \varphi$ is the configuration satisfying $(\theta_v \varphi)_w = \varphi(w - v)$.

(iii) Let $\mathbb P$ be a Gibbs measure. Prove that $\mathbb P$ is extremal if and only if for every $A \subseteq \Omega$ measurable,

$$\lim_{\Lambda \uparrow \mathbb{Z}^d} \sup_{B \in \mathcal{F}_{\Lambda^c}} |\mathbb{P}(A \cap B) - \mathbb{P}(A)\mathbb{P}(B)| = 0,$$

where we write $B \in \mathcal{F}_{\Lambda^c}$ to indicate that $B \subseteq \Omega$ is measurable and $1_B(\varphi) = 1_B(\varphi')$ whenever $\varphi_v = \varphi'_v$ for all $v \in \mathbb{Z}^d \setminus \Lambda$, and where we write $\lim_{\Lambda \uparrow \mathbb{Z}^d}$ to indicate a limit over all sequences (Λ_n) of finite sets which increase to \mathbb{Z}^d .

Remark: Thus extremal measures satisfy a form of weak mixing: 'far away' events are almost uncorrelated.

(iv) Consider the Ising model with free boundary conditions. That is, fixing $h, \beta \ge 0$, the model for each finite $\Lambda \subseteq \mathbb{Z}^d$ is the measure $\mathbb{P}^{\emptyset}_{\Lambda}$ on functions $\varphi : \Lambda \to \{-1, 1\}$ given by

$$\mathbb{P}^{\emptyset}_{\Lambda}(\varphi) = \frac{1}{Z^{\emptyset}_{\Lambda}} \exp\left(\beta \sum_{u,v \in \Lambda, u \sim v} \varphi_{u} \varphi_{v} + h \sum_{v \in \Lambda} \varphi_{v}\right),\tag{1}$$

where, as usual, Z_{Λ}^{\emptyset} is a normalization factor. Let (Λ_n) be a sequence of finite sets in \mathbb{Z}^d which increases to \mathbb{Z}^d . Prove that $\mathbb{P}_{\Lambda_n}^{\emptyset}$ converge to a limiting Gibbs measure \mathbb{P}^{\emptyset} on functions $\varphi: \mathbb{Z}^d \to \{-1, 1\}$ and that \mathbb{P}^{\emptyset} is translation invariant.

Date: July 4, 2017.

Clarification: We may view each measure $\mathbb{P}^{\emptyset}_{\Lambda_n}$ as a measure on functions $\varphi : \mathbb{Z}^d \to \{-1, 1\}$ which is supported on functions with some fixed value outside Λ_n , e.g., having $\varphi_v = 1$ when $v \notin \Lambda_n$. In this way all the $\mathbb{P}^{\emptyset}_{\Lambda_n}$ are measures on the same space and convergence in distribution is well defined.

Hint: This is Exercise 3.16 in the Friedli-Velenik book. Use the GKS inequality to first prove that for any finite $A \subseteq \mathbb{Z}^d$, $\mathbb{P}^{\emptyset}_{\Lambda_n}(\prod_{v \in A} \varphi_v)$ increases with *n* (Exercise 3.12).

(v) Consider the Ising model with free boundary conditions at zero magnetic field, that is, the model (1) with h = 0. To emphasize the dependence on temperature we now denote the finite volume Gibbs measures by $\mathbb{P}^{\emptyset}_{\Lambda,\beta}$ and the infinite-volume limit (of exercise (iv)) by $\mathbb{P}^{\emptyset}_{\beta}$. Define the critical inverse temperature β_c by

$$\beta_c := \inf(\beta \mid \inf_{v \in \mathbb{Z}^d} \mathbb{P}^{\emptyset}_{\beta}(\varphi_v \varphi_0) > 0)$$

(it can be shown that this definition coincides with the definitions discussed in class). The following version of Simon's inequality is due to Lieb: Let $\Lambda \subseteq \mathbb{Z}^d$ be a finite connected set containing the origin **0** and let $v \in \mathbb{Z}^d \setminus \Lambda$. Then

$$\mathbb{P}^{\emptyset}_{\beta}(\varphi_{v}\varphi_{\mathbf{0}}) \leqslant \sum_{u \in \partial_{\mathrm{int}}\Lambda} \mathbb{P}^{\emptyset}_{\Lambda,\beta}(\varphi_{u}\varphi_{\mathbf{0}}) \mathbb{P}^{\emptyset}_{\beta}(\varphi_{v}\varphi_{u}),$$

where we write $\partial_{\text{int}}\Lambda := \{u \in \Lambda \mid \exists w \notin \Lambda, u \sim w\}$ for the internal vertex boundary of Λ . Deduce that for every finite connected set Λ containing the origin one has

$$\sum_{u \in \partial_{\mathrm{int}} \Lambda} \mathbb{P}^{\emptyset}_{\Lambda, \beta_c}(\varphi_u \varphi_0) \ge 1.$$
⁽²⁾

Remark: This means that at the critical point the correlations cannot decay faster than polynomially. We have also seen that for $\beta < \beta_c$ the correlations decay exponentially whereas for $\beta > \beta_c$ they do not decay (by definition).

Hint: Show that if there exists some Λ for which (2) is violated then there is exponential decay of correlations. Apply this also at $\beta = \beta_c + \varepsilon$.

(vi) Let $U : \mathbb{R} \to \mathbb{R}$ be a C^2 function satisfying U(x) = U(-x) and $\sup_x U''(x) < \infty$. The two-dimensional random surface model with potential U is specified as follows: For each finite $\Lambda \subseteq \mathbb{Z}^2$ and $\eta : \mathbb{Z}^2 \to \mathbb{R}$ the probability measure $\mathbb{P}^{\eta}_{\Lambda}$ on configurations $\varphi : \mathbb{Z}^2 \to \mathbb{R}$ is given by

$$d\mathbb{P}^{\eta}_{\Lambda}(\varphi) = \frac{1}{Z^{\eta}_{\Lambda}} \exp\left(-\sum_{\substack{u \sim v \\ \{u,v\} \cap \Lambda \neq \emptyset}} U(\varphi_u - \varphi_v)\right) \prod_{v \in \Lambda} d\varphi_v \prod_{v \in \mathbb{Z}^2 \setminus \Lambda} d\delta_{\eta_v}(\varphi_v)$$
(3)

where δ_s is the Dirac delta measure at s, so that the measure $\mathbb{P}^{\eta}_{\Lambda}$ is supported on configurations φ which equal η outside Λ and where Z^{η}_{Λ} is chosen to normalize the measure to be a probability measure (and we assume that U satisfies sufficient integrability conditions to ensure that such normalization is possible).

(a) Mimic the proof of the Mermin-Wagner theorem given in class for the XY model to show the following: There exist positive C = C(U) and $\alpha = \alpha(U)$ such that for all integer L > 0, all 0 < t < 1 and all $\eta : \mathbb{Z}^2 \to \mathbb{R}$,

$$\mathbb{P}^{\eta}_{\Lambda_L}(\exp(it\varphi_{(0,0)}))| \leqslant \frac{C}{L^{\alpha t^2}},$$

where $\Lambda_L := \{-L, -L+1, \dots, L\}^2$. Remark: A similar argument shows that $\operatorname{Var}_{\Lambda_L}^{\eta}(\varphi_{(0,0)}) \ge c(U) \log(L)$ for some positive c(U).

(b) Deduce that the model does not have any Gibbs measures in two dimensions. Remark: The same holds in dimension d = 1. In dimensions $d \ge 3$ the model does admit Gibbs measures.